


 Section F provides methodological details and results of the matched sample analysis of 

repeat violations.  

o Table 2 presents effects from 2006-14, demonstrating that repeat violations do not 

systematically predict worse outcomes.  

 Section G presents results from the matched sample analysis of order effects.  

o Table 3 shows that the time trend, conditional on the average inspection score, 

does not systematically predict outcomes.  

 Section H displays results from the investigation into predictive power going back 

multiple rounds of inspections.  

o Figure 5 plots the magnitude and 95% confidence interval of regression 

coefficients, showing that there is a sharp break in marginal predictive power 

around 4-5 prior inspections.  

 Section I shows that area rotations do not substantially affect the average critical score of 

an inspector, meaning that inter-inspector differences dwarf area differences. 

o Figure 6 shows that inspector differences persist across area rotations.  These 

findings justify particular attention to account for inter-inspector variability rather 

than inter-area variability.   

 Section J provides a formal description of unadjusted and adjusted grading systems. 

 Section K describes the easy-to-use software we make available in the R language to 

implement adjusted grading.  

 Section L calculates the grade distribution for 60 establishments subject to full 

investigations with probable or confirmed instances of foodborne illness under both 

unadjusted and adjusted grading. 

  



A. Lab-Confirmed Foodborne Illness and Violations 

 

 

 Lab-Confirmed 

Foodborne Illness 

 

 Yes No Difference 

Critical point score 18.42 

(3.67) 

9.95 

(0.07) 

8.47** 

(3.67) 

Non-critical point score 6.40 

(1.09) 

2.98 

(0.02) 

3.42*** 

(1.09) 

N 57 51,757  

Table 1: Correlation between number of critical and non-critical violations and probable or lab-confirmed cases of foodborne illness 
based on full investigations.  Each cell presents the conditional mean with standard errors in parentheses below.  The “Difference” 
column indicates the difference in points between establishments with lab-confirmed foodborne illnesses and those without.  **/*** 
indicate statistical significance at 0.05 and 0.01-levels, respectively, using a difference-in-means t-test. 

  



B. Predictive Power of Critical Score 

 

Figure 1: Receiver operating characteristic (ROC) curve of logistic regression model predicting probable or lab-confirmed 
foodborne illness outbreaks.  The solid line represents the ROC curve for a model with critical points as the explanatory variable.  
The dashed line represents the ROC curve for a model with total points (the sum of critical and non-critical points) as the 
explanatory variable.  While both predictors are statistically significant (p-value < 0.01), the substantive predictive power is low.  
For instance, sensitivity (the true positive rate) at 50% has a specificity (true negative rate) of only 61-67%.  
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C. Predicted Probability of Investigation 

 

Figure 2: Correlation between critical violation points and probable or lab-confirmed cases of foodborne illness based on full 
investigations.  The bottom panel plots the histogram of critical violation points of all establishments. The top panel plots the 
critical violation points in the routine inspection immediately preceding the case of foodborne illness.  The middle panel plots the 
model-based association, using a logistic regression with foodborne illness as the outcome and critical violation points as the 
explanatory variable.  The curve plots the predicted probability, with 95% confidence intervals.  The coefficient is statistically 
significant (p-value < 0.001), but because the baseline rate of foodborne illnesses traced back to an establishment is so low, the 
substantive predictive power is low.   
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D. Reliability of Critical vs. Non-Critical Violations 

 

 

Figure 3: Results from 378 peer review inspections.  The x-axis plots the baseline rate at which each violation was cited and the y-
axis plots the rate at which two inspectors observing the same conditions deviated on whether or not to cite the violation.  Red 
(blue) corresponds to critical (non-critical) violations, and the bands present correlation from a simple linear fit separate to critical 
and non-critical violations, with 95% confidence intervals.  Critical violations exhibit much lower deviation rates, so that basing a 
grade on critical violations has a better public health rationale and improves reliability of grades. 

  





F. Matched Samples Analysis of Repeat Violations 

 

Methods 

We analyzed inspection data for King County businesses with “risk level 3” permits (highest risk 

category) with at least one inspection score in the year of interest (specified in the “Year” 

column in Error! Reference source not found.), and with at least two subsequent inspections 

(between January 1 in the year of interest and July 2016).  We matched businesses with the same 

inspection scores in the first and second rounds of inspections (with each unique set of first and 

second round scores corresponding to one stratum), and identified, as members of a treatment 

group, those businesses in each stratum that were cited for the same violation in the first and 

second inspections. 

 

Denote the total number of treatment businesses in year �6 by �0�5 (omit �6 indices on all variables 

to simplify notation, although each variable is also dependent on year), the number in stratum �F 

by �0�5�Ý, the number of control businesses in stratum �F by �0�4�Ý, and the estimators for the mean 

third round inspection scores in stratum �F by �;$�5�Ý and �;$�4�Ý, for the treatment and control groups 

respectively.  As described in Imbens and Rubin,1 we calculate estimators for the mean 

inspection scores in the third round of inspections, �;$�5 and �;$�4, for the treatment and control 

groups, as follows: 
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G. Matched Samples Analysis of Order Effects 

 

Year No. 

businesses, 

Treatment 

No. 

businesses, 

Control 

Score,  

Treatment 

Score,  

Control 

Score 

Difference 

(Treatment – 

Control) 

2006 1818 1884 11.19 11.40 -0.21 

2007 1949 1863 11.53 10.81 0.72 

2008 1886 1892 10.42 10.55 -0.13 

2009 1947 1803 11.49 10.05 1.44*** 

2010 1730 2072 9.89 8.98 0.91** 

2011 1789 1832 10.49 10.07 0.42 

2012 1938 1854 11.04 10.55 0.48 

2013 1890 1800 13.76 13.19 0.57 

2014 1769 1934 14.38 14.07 0.31 

Table 3: Matched Samples and Inspection Score Trends. We analyzed inspection data for level 3 permit businesses with at least 
one inspection score in the year of interest (specified in the “Year” column above), and with at least two subsequent inspections 
(between January 1 in the year of interest and July 2016). We matched businesses with the same inspection scores in the first and 
second rounds of inspections, and sorted businesses into treatment and control groups based on whether scores across the first and 





I. Persistence of Inspector Differences across Different Areas 

 

 

Figure 6: Correlation of inspector average critical score before an area rotation (2012-13) and after area rotation (2014-15).  Each 
dot represents one inspector, weighted by the average number of inspections conducted across both periods to account for sampling 
variability. The line indicates prediction from a least squares fit, with 95% confidence interval.  This figure demonstrates that 
differences in food safety quality across areas are dwarfed by inter-inspector differences.  Regardless of the rotation, inspectors 
center their scores around the pre-rotation mean.  
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J. Formal Description of Grading Systems 

 

Let us encode restaurant information within matrix �„  and vector � , with matrix �„  being of 

dimensions �J H 4 and vector �  being of length �J, where �J is the number of restaurants to be 

graded (in our case, the number of high risk restaurants in King County).  Entry �„ �Ü�Ý is the 

inspection score for restaurant �E in the �Fth most recent inspection, while � �Ü is the ZIP code for 

restaurant �E (although in principle, � �Ü could represent any unit of aggregation that is meaningful 

within the grading system, e.g., inspector assignment areas, census tracts, municipalities, or 

district offices).   For example, imagine that restaurant A in ZIP code 10001 scored 5, 5, 1 and 2 

points in its most recent, second most recent, third most recent and fourth most recent 

inspections respectively; and that restaurant B in ZIP code 10002 scored 3, 4, 5, and 10 points in 

its most recent, second most recent, third most recent and fourth most recent inspections 

respectively (these are artificial scores and should not be associated with real restaurants in these 

ZIP codes).  Then matrix �„  would read: 

� „  L e
5 5 1 2
3 4 5 10
�  �  �  � 

i,  

and vector � : 

�    L e
10001
10002

�
i. 
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From Equation (1), unadjusted grading only uses the most recent inspection score for grade 

assignment and grade cutoff vectors are independent of ZIP code. (Restaurants A and B would 

both receive ‘A’ grades in this scheme, since 5 and 3 are both less than or equal to 13). 

 

Quantile Adjustment (with “Ties Resolution”) 

In our proposed grading system (adjusted grading), we replace �„ �Ü�5 with �ž%�Ü in (1), where �ž�Ü is the 

�Eth row vector in matrix �„  and  �ž%�Ü is the mean inspection score for restaurant �E over its four most 

recent inspections (or fewer if it has not yet been subject to as many).  Furthermore, �£ is no 

longer independent of ZIP code.  In particular, let �½ be a vector of percentiles of length 2 with 

�½�5  O � ½�6.  Let �›�:� �Ü�; be the vector of unique mean (critical) inspection scores for ZIP code � �Ü of 

length �J�í�Ô, and without loss of generality, let us assume that scores are ordered from smallest to 

largest.  Let vector �•�:�›�:� �Ü�;�; contain the weights associated with each mean score in ZIP code 

� �Ü, i.e., let �• �Ý�:�›�:� �Ü�;�;, the �Fth element of �•�:�›�:� �Ü�;�;, be the proportion of restaurants in ZIP code 

� �Ü with score �›



 
�Ck�ž%�•, �£�:� �Ü, �½�; o  L�P

�#,                               �ž%�•  Q � £�5�:� �Ü, �½�;
�$,        �£�5�:� �Ü, �½�; O �ž%�•  Q � £�6�:� �Ü, �½�;
�%,                               �ž%�•  P � £�6�:� �Ü, �½�;

. 

 

 

(4) 

The vector of percentiles, �½, is independent of ZIP code: the core idea of our adjusted grading 

scheme is to differentiate as close to the top �½�5% of restaurants in ZIP code � �Ü from the middle 

�:�½�6  F � ½�5�; �5�5�;�Ü



businesses have a mean inspection score, �ž%�Ü, of 2.5.  The problem with the percentile method is 

demonstrated if the desired proportion of restaurants to gain ‘A’ grades, �½�5, falls between 0.52 

and 0.595. In this instance, the returned A/B cutoff for Tukwila, �£�:Tukwila, �½
Ú�;, calculated by 

the percentile method, is 2.5; and 67% of restaurants in Tukwila gain an ‘A’ grade. This is 

despite the fact that choosing 1.25 as the A/B cutoff results in 52% of restaurants scoring ‘A’s, 

which is closer to the percentage of restaurants gaining ‘A’ grades in other ZIP codes (most other 

ZIP codes do not have such large ties problems, so have proportions closer to the desired 0.52 O

�½�5 O0.595 ).  If �½�6 L 0.9, 23% of restaurants in Tukwila gain a “B” grade with the percentile 

method (the ties problem is not an issue for the upper end of the Tukwila score distribution), 

while this is closer to, depending on the choice of �½�5, 31% - 38% of restaurants in other ZIP 

codes. With such a large difference in the proportion of ‘B’ grades between Tukwila and other 

ZIP codes, the B/C cutoff in Tukwila seems an arbitrary choice.  In comparison, the “Ties 

Resolution” method, for the same �½�5, returns 1.25 as �£�:Tukwila, �½
Ú�;, and selects the B/C cutoff 

so that as close as is possible to �:0.9  F � ½�5�;% of restaurants gain “B” grades.  In order to 

minimize geographic differences in the presence of ties in ZIP code score distributions, we prefer 

quantile adjustment with ties resolution.  This is the default method applied inside the 

‘����� �� 	� �
 ’ function of our software package.  

 

Additional Implementation Details for the Quantile Grading System 

While the majority of establishments are graded according to the protocol described above, there 

are some edge cases that we discuss here. Firstly, in the case that a ZIP code has fewer than 10 

establishments, we aggregate inspection scores for establishments in neighboring ZIP codes 





K. Software  

 

To easily implement the grading system in any jurisdiction, we have designed an open source 

statistical software package called “QuantileGradeR” written in the R language.2 The package is 

available at https://cran.r-project.org/web/packages/QuantileGradeR/index.html. This package 

enables the calculation of �£�:� �Ü, �½�;, the vector of grade cutoffs, for each ZIP code � �Ü, as well as 

adjusted grades, �C�:�ž%�•, �£�:� �g, �½�;�;, and unadjusted grades,  �C



requirement for �„  is that it is an �J H �L numerical matrix, where �J is the number of entities to be 

graded and �L is the number of scores that should be averaged to calculate �ž%�• in the adjusted 



L. Grades and Foodborne Illness 

 

 A B C 
Unadjusted  24 24 12 

Adjusted 22 25 13 

Table 4: Incidence of probable or confirmed foodborne illness from 2012-May 2016 across establishments by grading system.  
Each row indicates the distribution of grades existing at the time of the illness under the unadjusted or adjusted grading system.  
The adjustment moves two establishments from the ‘A’ to the ‘B’ category, and one from the ‘B’ to the ‘C’ category.   
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